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The evolution of a simple piston under a constant external force is investigated
from a microscopic approach. Using Boltzmann’s equation and simplifying
assumptions it is shown that the system evolves towards equilibrium according
to the macroscopic laws of thermodynamics: entropy production is positive and
Onsager’s relations are verified near equilibrium. Numerical simulations are
presented which show that the evolution takes place in two stages: first a
deterministic approach to the equilibrium position and then a stochastic motion
around the equilibrium position. It also shows that the damping is not correctly
described with these simplifying assumptions and a quantitative explanation of
this effect remains an open problem.
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1. INTRODUCTION

There is a renewed interest in the theoretical understanding of the applica-
bility of the second law of thermodynamics to small systems in particular,
but also the nature of the approach to equilibrium and the identification of
the entropy function far from equilibrium. (1) The focus of these studies is
purely microscopic and the systems of interest are most usually those in
which all of the constituents can be treated exactly in a classical mechanical
sense. The time evolution can then be followed, in principle, exactly in
a computer simulation and hence direct observations of the detailed
approach to equilibrium can be made. The values of many properties such



as energy and pressure can easily be determined microscopically and the
flow of energy and the establishment of mechanical and thermal equilib-
rium can be tracked. A model system of gas in a cylinder enclosed by a
piston has been a standard tool in thermodynamics and through the
Carnot cycle leads to the identification of entropy as a state function, so
it is not surprising to find a microscopic approach to piston problems an
important component of the latest studies. (2)

The ‘‘adiabatic’’ piston is a model system in which two regions of gas
at initially different temperatures and pressures are separated by a piston. If
the piston has no internal degrees of freedom then it is usually assumed to
be unable to conduct heat, and is treated adiabatically. (3) However, when
the mass of the piston is finite, energy is able to move from one region of
gas to the other through the stochastic motion of the piston. It has been
shown by qualitative arguments and numerical simulations (4, 5) that for a
finite cylinder the evolution takes place in two stages with very different
time scales. In the first stage the evolution is adiabatic and proceeds rapidly
to mechanical equilibrium, where the pressures of the two gases are equal
but the temperatures are not. Then the second stage is on a time scale
several orders of magnitude longer, and leads to thermal equilibrium. These
results have been recently established under simplifying assumptions using a
two-time-scale perturbative approach. (6) However the mechanism respon-
sible for the adiabatic evolution in the first stage is far from understood.

It is clear that the evolution of a simple piston, where the gas con-
tained in one isolated cylinder is submitted to a constant force, is adiabatic
and should exhibit properties similar to the first stage, i.e., the adiabatic
evolution of a piston separating two fluids. Moreover, the simple piston
is a trivial problem in thermodynamics for which the final equilibrium is
immediately obtained from the two laws of thermostatics. Therefore, we
expect that it will also be a simpler problem from a microscopical point
of view and that it will lead to a better understanding of the mechanism
responsible for the adiabatic evolution. In particular, one can expect that
typically there will be a damped oscillation toward the equilibrium position
characterized by a frequency and damping constant. This is the problem we
address in this paper.

This adiabatic simple piston has a long history as E. Rüchardt in
1929 (7) published a note containing a method of experimentally measuring
the ratio of the specific heats of a gas c=Cp/Cv. His apparatus used a
large gas container connected to a precision made glass tube of uniform
cross section, with a close fitting steel ball. When the steel ball is displaced
from its equilibrium position and released it executes a damped oscillatory
motion and the frequency of that motion can be directly related to the bulk
modulus and then c. Usually the oscillations are assumed to be adiabatic;

298 Gruber and Morriss



however, due to the finite thermal conductivities of the gas and the walls,
there are heat flows into and out of the gas during expansion and
compression and the system may be intermediate between adiabatic and
isothermal. (8)

In an early report (9) on the simple two-dimensional piston with finite
mass and finite amount of gas using numerical simulations, we observed
two different regimes of damping behaviour—strong and weak damping—
determined by the magnitude of the damping coefficient. It was clear that
this damping coefficient is different from the friction coefficient responsible
for the constant velocity initially observed when the damping is strong.

In this work we present a qualitative analysis of the results observed
in the previous numerical simulations. Assuming as usual in kinetic theory
that the correlation function has the factorisation property, we obtained
from Boltzmann’s equation the equations for the time evolution of the
moments of the velocity of the piston (Section 2). In Section 3 we consider
the thermodynamic limit for the piston where the width of the piston, and
the number of particles N tend to infinity with N/L and 2mL/(M+m)
fixed. In this limit we obtain deterministic equations for the piston. This
equation is investigated first in the case of an infinite cylinder (Section 3.1),
then for the finite cylinder (Section 3.2). The case of a piston with finite
mass in an infinite cylinder is analysed in Section 4 and then in Section 5
we consider a piston with finite mass in a finite cylinder. As soon as the
mass of the piston is finite we have to take into account fluctuations and
the temperature of the piston. In this Section 5, connection with non-equi-
librium thermodynamics is presented. Numerical simulations are presented
and analysed in Section 6. Finally conclusions are elaborated in Section 7.
It should be stressed that to obtain explicit equations for the evolution of
the piston, without studying the motion of the gas, we have to introduce
some ad hoc assumptions (Assumption 2 in Section 3 and Assumption 3
in Section 5). Those assumptions have been previously introduced in the
analysis of experimental results. Our numerical simulations show that
the equations so obtained predict correctly the frequency of oscillations,
the friction effect in the first part of the evolution, and the strong vs. weak
damping phenomena. However, it does not give an accurate prediction of
the damping rate. Therefore the theory necessary to describe these intrigu-
ing numerical observations remains an open problem.

2. MICROSCOPIC MODEL: EQUATIONS FOR THE MOMENTS OF

THE PISTON VELOCITY

The microscopic system we consider consists of N identical particles of
mass m, moving in a two-dimensional rectangle (cylinder) of fixed width L,
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Fig. 1. The microscopic model; (L1 will be either 0 or − .).

closed at one end by a fixed wall and on the other end by a movable piston
of mass M. The walls and the piston are ‘‘adiabatic’’ in the sense that they
have no internal degrees of freedom. (See Fig. 1.)

The piston moves without friction along the x-axis keeping its orien-
tation fixed along the y-axis and it is submitted to a constant external force
F=−Mg. In the following we shall consider a (partial) thermodynamic
limit L Q ., M Q ., and N Q . with

c=1 2mL
M+m

2=constant,
N
L

=constant. (1)

We denote X(t) and V(t) to be the position and velocity of the piston.
They will be considered to be random variables. Let F(V; t) be the proba-
bility distribution for the velocity of the piston at time t; we shall be inter-
ested in the moments of the velocity:

OV sPt=F
.

−.

dV F(V; t) V s. (2)

The particles are hard-disks of diameter d making purely elastic collisions
so that the kinetic energy is conserved during collisions, and

1
M

OEgasPt+
1
2
OV2Pt+gOXPt=constant. (3)

For example, with v — (v, v2) and V the velocities of a particle and the
piston before a collision, then after the collision the velocities will be:
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vŒ=−v+2V+
c

L
(v − V)

v −

2=v2

VŒ=V+
c

L
(v − V).

(4)

The velocities of the particles are random variables and we introduce the
density distribution of particles with velocity v — (v, v2) at the surface of the
piston by

r(v; t)=r(t) j(v; t) (5)

with r(t), twice the density of the particles which are going to hit the piston
at time t, and

F dv h(v) j(v; t)=1/2.

We assume the system to be homogeneous in the y-direction. We introduce
the distribution of the velocity in the x-direction (by integrating out the
y-component)

j(v; t)=F
.

−.

dv2 j(v, v2; t) F
.

0
dv j(v; t)=1

2 .

For t [ 0 the piston is rigidly fixed at some position X0, i.e., F(V; t)=d(V),
and the particles are in thermal equilibrium with density r0 and tempera-
ture T0 described by the Maxwellian distribution

j(v; t)=1 m
2pkBT0

2 exp 1 −
mv2

2kBT0

2 . (6)

For t \ 0 the piston moves freely under the action of the constant external
force and the collisions with the particles. The problem is then to study the
evolution of the piston.

In the following qualitative analysis we shall concentrate on the
evolution of the piston and we shall introduce simplifying assumptions
concerning the evolution of the gas. These assumptions generalize those
which have been previously introduced to study experimental results (7, 8)

and we expect that they will be satisfied for a dilute gas (r(t) small with
respect to the close-packing density) and small velocity of the piston
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(compared to the velocities of the particles). In particular for this last con-
dition to be satisfied the initial pressure exerted by the gas (=r0kBT0)
should be approximately equal to the applied pressure (=Mg/L). We shall
not try to justify these assumptions, but as we shall see the results obtained
will be consistent with these assumptions and we shall compare the pre-
dicted consequences with the observed numerical simulations.

Assumption 1. Before the collision of a particle on the piston, it
is possible to neglect the correlations between the velocity of the piston
and the velocities of the particles: i.e., the two point correlation function
r(v, V; t) for the velocity of one particle which is going to hit the piston,
and the velocity of the piston, has the factorisation property r(v, V; t)=
r(v; t) F(V; t) if v > V.

Under this assumption we obtain from the Boltzmann equation (see
ref. 10):

d
dt

OV sP=−sgOV s − 1P+L 7F
.

V
dv r(t) j(v; t)(v − V)35V+

c

L
(v − V)6

s

− V s48

(7)

where O · · ·P is the average computed with the distribution F(V; t). Let us
define Jn which is a function of V and a functional of j(v; t) by

Jn(V)=Jn[V; j]=
(−1)n

n!
F

.

V
dv j(v; t)(v − V)n, n \ 0. (8)

Thus we have

d
dt

OV sP=−sgOV s − 1P+cr(t) C
s − 1

n=0
(−1)n 1 c

L
2n s! (n+2)

(s − n − 1)!
OV s − n − 1Jn(V)P.

(9)

This is the final equation we want to consider to study the evolution. In
particular for s=1, we have

d
dt

OVP=−g+2cr(t)OJ2(V)P=−g+
1

M
Fgas Q piston. (10)

Therefore we are led to define a ‘‘temperature,’’ a ‘‘pressure,’’ and a
‘‘friction coefficient’’ l̄(V), at the surface of the piston by
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kBT=4mJ2(V=0)=2m F
.

0
dv j(v; t) v2 (11)

p=rkBT (12)

l̄(V) V=−2cr(J2(V) − J2(0)). (13)

It should be stressed that Eqs. (11)–(13) are simply definitions of quantities
at the surface of the piston. In particular from Eq. (10) p is not the force
per unit length exerted by the gas, and r is not the density of particles at
the surface of the piston. In fact in the following we shall identify r with a
function of the density of particles (see Eq. (17)). Therefore (12) should not
be considered as the equation of state of a perfect gas. From (8) and (13),
the friction coefficient is positive for all V (as it should be) and

l̄(V=0)=−2crJ1(V=0)=2cr F
.

0
dv j(v; t) v. (14)

In conclusion the force exerted by the gas on the piston is the sum of a
pressure force, a friction force, and a force associated with the stochastic
motion of the piston.

Property 1. The Maxwellian distribution functions

j(v; t)=1 m
2pkBT

2
1
2
exp 5−

mv2

2kBT
6

F(V; t)=1 M
2pkBT

2
1
2
exp 5−

MV2

2kBT
6

(15)

define an equilibrium state of (7) if and only if

M
L

g=rkBT (16)

where r is defined by Eq. (5) and is in general different from the density of
particles.

This property is a direct consequence of Eq. (9), the explicit form of
the Maxwellian distribution, and conservation of energy during collisions.
It expresses the condition that the external force per unit length Mg/L
balances the pressure exerted by the hard-disk gas p=rkBT. From the
simulations it follows that r can not be taken as the bulk density of

A Boltzmann Equation Approach to the Dynamics of the Simple Piston 303



particles, but an excellent fit with the experimental results is obtained if we
use Enskog’s empirical formula for hard disks

r=n
1+y2/8
(1 − y)2 , y=

pd2

4
n (17)

where n is the bulk density of particles.
In the following sections we want to investigate the evolution of the

piston with initial conditions given by a Maxwellian distribution for the
particles, but F0(V)=d(V − V0) for the piston. In particular, we would like
to understand for this microscopic model if there is an approach to equi-
librium, if this final state coincides with the one predicted by thermo-
dynamics, and if the results predicted by the model coincide with those
observed experimentally. (8)

3. THERMODYNAMIC LIMIT FOR THE PISTON

In this section we consider the thermodynamic limit for the piston, i.e.,
L Q ., M Q ., N Q ., with c=2mL/(M+m)=constant and N/L=
constant. In this limit (9) becomes

d
dt

OV sP=−sgOV s − 1P+2scr(t)OV s − 1J2(v)P (18)

and the following property is easily established (similar to ref. 7).

Property 2. Let V(t)=It(V) be the solution of

˛ d
dt

V(t)=−g+2cr(t) J2(V)

V(t=0)=V0

(19)

(with r(t) and J2(V, t) given functions of t), then the solution of (18) with
the initial condition F0(V)=d(V − V0), is

OV sPt=V(t)s. (20)

In conclusion if F0(V)=d(V − V0) then in the thermodynamic limit
there are no fluctuations and V(t) is a deterministic function.
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V

F(V)

V∞ 

 

Fig. 2. The function F(V).

3.1. Infinite Cylinder

Let us first consider the case of an infinite cylinder where |L1 |, as well
as L, are infinite. We take initial conditions F0(V)=d(V − V0) and r0(v)=
r0j0(v), with V0, r0, and |1 − L

Mg r0kBT0 | sufficiently small to neglect recolli-
sions of the particles on the piston. In such a situation we expect that
Assumption 1 will be satisfied and we can consider that the velocity distri-
bution of particles before the collision on the piston will not vary in time so
that r(t)=r0 and J2(V; j)=J2(V; j0). In this case Eq. (19) has the form

dV
dt

=F(V) (21)

where

F(V)=−g+2cr0J2(V; j0)=−g+
L
M

r0kBT0 − l̄(V) V.

Since

dF
dV

=2cr0J1(V) [ 0

we have the following property.

Property 3. For the infinite system (|L1 |=., L=.) the velocity
of the piston V(t) tends monotonically and exponentially fast to the
value V., the solution of

V. l̄(V.)=
L
M

r0kBT0 − g (22)
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and

Ft(V) Q d(V − V.).

Let us remark that Eq. (22), i.e.,

g=
L
M

2mr0 F
.

V.

dv j(v)(v − V.)2

expresses the condition that V. is the velocity such that in the reference
frame of the piston the pressure exerted by the gas is equal to Mg/L.

In particular, for a Maxwellian distribution of velocities the infinite
system evolves towards a stationary state where the constant velocity V. of
the piston is given by the following implicit equation,

˛g=
L
M

r0kBT0
4

`p
F

.

ū
du e−u2

(u − ū)2

V.==2kBT0

m
ū.

(23)

Clearly, if |1 − L
Mg r0kBT0 | is small, then V. is small, approximately given by

V. 5
1
r0

= p

8mkBT0

5r0kBT0 −
Mg
L
6 . (24)

If moreover V0 is small we can linearize (19) to obtain

V(t) 5 V.+(V0 − V.) e−l̄t (25)

l̄=
2L
M

r0
=2mkBT0

p
=l̄(V=0). (26)

It is interesting to observe that the same problem in fluid dynamics (using a
1-dimensional shock wave (11)) gives

V.=
1
r0

= 1
2mkBT0

5r0kBT0 −
Mg
L
6

i.e., Eq. (24) with `p/8 5 0.627 replaced by 1/`2=0.707. However,
although describing the same physical situation, these equations have been
derived using completely different set up. In fluid dynamics it is a conse-
quence of the macroscopic continuity equations together with the adiabatic
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condition, while in our approach it follows from a microscopic dynamics
together with the condition that recollisions can be neglected and Assump-
tion 1.

Let us note that for any stationary distribution of velocity for the par-
ticles, the infinite system evolves toward the stationary state V(t)=V..
Furthermore the time necessary to reach this stationarity is of the order l−1

and will be very short for large l. From (22) this final state is an equilib-
rium state with V.=0, if and only if r0kBT0=Mg/L where T0 is defined
by (12).

3.2. Finite Cylinder

We consider again a piston with infinite mass L=., but now the
cylinder has finite length so that r(t), T(t), and Jq(t) are functions of time.
We put L1=0. We take initial conditions such that for the piston F0(V)=
d(V − V0) with |V0 | small, and for the particles r0 and |1 − L

Mg r0kBT0 | suffi-
ciently small to expect that our assumptions will be valid.

In the analysis of the experimental results (7, 8) it was assumed that the
thermodynamic quantities of the gas at the surface of the piston are
approximately given by the average of those quantities in the gas, i.e.,
r=N/LOXP and kBT=OEgasP/N. As we have discussed in Section 2, and
is confirmed by the numerical simulations corresponding to Section 3.1
(infinite cylinder), one can not take r equal to n=N/LX as soon as
n \ 0.05 (unit of length is hard core diameter). An excellent fit is however
obtained if one considers r to be this function of n such that p=r(n) kBT
is the equation of state of the gas. These remarks leads us to introduce
the following assumption, whose validity will have to be tested by the
simulations.

Assumption 2 (2-dimensional cylinder).

(a) The density of particles on the surface of the piston is given by

r(t)=r(X(t)), (27)

where the function r(X) has the following properties

r(X) > 0 and
dr

dX
< 0 for X > Xmin \ 0

r(X)=. for X [ Xmin (hard core packing).
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For example, one can take (12)

r(X)=
N

LX
or r(X)=

N
L(X − a)

or

r(X)=
N

LX
1

(1 − c/X)2 or r(X)=
N

LX
1+1

8 (c/X)2

(1 − c/X)2

with c=p

4 d2N/L, a=2c, (d is the diameter of the hard disk) which corre-
sponds respectively to a very dilute gas, a dilute van der Waals gas, or a
moderately dense Enskog gas of hard disks.

(b) The temperature T of the gas near the surface of the piston,
defined by (12), is given by

OEgasP=NkBT. (28)

With the initial condition F0(V)=d(V − V0), we have seen that
OV sP=OVP s, and from (3), (19), and (28) we have

kBT(t)+
1
2

M
N

V(t)2+
M
N

gX(t)=
E0

N
=constant (29)

d
dt

V=−g+
L
M

rkBT − l̄(V; t) V (30)

with l̄(V; t) \ 0. We thus have to discuss the evolution of X(t) satisfying
(29) and (30).

Property 4. The equilibrium states of the piston with infinite mass
in a finite cylinder are uniquely given by

˛M
L

g=r(Xeq) kBTeq

kBTeq=
E0

N
−

M
N

gXeq

(31)

that is

Xeq+
N
L

1
r(Xeq)

=
E0

Mg
. (32)
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Property 5. Under Assumptions 1 and 2, the piston evolves toward
the equilibrium state defined by (31).

Proof. From (29) and (30)

d
dt

(kBT)=−
L
N

r(X) kBT
dX
dt

+
M
N

l̄V2. (33)

Let us introduce the function F(X) by

d
dX

ln F(X)=
L
N

r(X). (34)

Then from (33) we have

F(Xt) Tt=F(X0) T0 exp 5F
t

0
dtŒ

M
N

l̄V2

kBT
6 (35)

which shows that the solution of (29) and (30) will satisfy the condition

Tt > 0 -t (36)

(as it should from the definition). The proof is then concluded with the help
of the following lemma, which can easily be established.

Lemma 1. The function S=S(E, X, V) defined by

S(E, X, V)=kB
N
L

ln 5F(X)1 E
M

− gX −
1
2

V226 (37)

i.e.,

S(T, X, V)=kB
N
L

ln 5F(X) kBT
N
M
6=S(T, X) (38)

has the following properties under the evolution defined by (29) and (30).

1.

dS
dt

=
1
T

M
L

l̄(V) V2 \ 0. (39)

2. The equilibrium point (Xf, Vf=0) defined by (31) is the unique
maximum of the function S(E, X, V) under the constraint E=E0.
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Conclusion. In the thermodynamic limit for the piston, i.e., L Q .,
the evolution of the piston is deterministic. It is the adiabatic evolution of
an adiabatic piston which satisfies the two laws of thermodynamics with
S(E, X, V) the entropy (per unit length) of the system. In fact from
Eqs. (3), (10), and (20) we have the first law of thermodynamics

d
dt

OEgasP=Fgas Q pistonV

(independent of Assumption 2) which implies that the heat flux is zero, and
the evolution defined by Eqs. (30) and (39), was derived in ref. 10 from the
two laws of thermodynamics.

To compare the numerical simulations with the result obtained above
we shall linearize Eqs. (30) and (39) around the equilibrium point
(Xf, Vf=0). Introducing t=X − Xf and using (31)

d2

dt2 t=−g 5L
N

rf −1rŒ

r
2

f

6 t − l̄f
d
dt

t (40)

which yields

t(t)=e−Wt (41)

with

W±=
1
2
3 l̄f ± i =4g 5L

N
rf −1rŒ

r
2

f

6− (l̄f)24 (42)

where Xf+N
L

1
r(Xf)=

E0
Mg and from (25) and (31)

l̄f=
2L
M

rf
=2m

p
kBTf=2 =2m

p

L
M

rf g.

Taking the expression r(X)=(N/LX)(1/(1 − c/X)2) from Assumption 2,
in this case we have

w2
f=g 5L

N
rf −1rŒ

r
2

f

6=
g

Xf

2 − (c/Xf)2

(1 − c/Xf)2=2
L2

MN
r2

f kBTf
51 −

1
2
1 c

Xf

226

l̄f=
2

(1 − c/Xf)
=2m

p

N
M

g
Xf

=
L
M

rf
=8mkBTf

p
(43)

Xf=
c
2
11+

E0

2cMg
251+=1 − 2 11+

E0

2cMg
2−26
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where E0=NkBT0+MgX0 and kBTf=(E0 − MgXf)/N which implies

w2
f −

1
4

l̄2
f=

g
Xf

1
(1 − c/Xf)2

52 −
2m
p

N
M

−1 c
Xf

226 . (44)

Let us note that from those linearized equations it follows that there is a
change in behaviour when Mgas/M=Nm/M=p: i.e., if Mgas/M < p the
damping is weak; if Mgas/M > p the damping is strong.

4. PISTON WITH FINITE MASS IN AN INFINITE CYLINDER

In the next two sections, we consider the case where L, and thus M, is
large but finite. We will assume the distribution F(V; t) has an asymptotic
expansion in powers of (c/L) which is uniform with respect to time and
thus

OV sPt= C
.

n=0

1 c

L
2n

vs, n(t).

In Section 3 we have studied the solution at order zero. In the following we
shall consider the evolution up to order one in the small parameter (c/L).
In this section we discuss first the case of the infinite cylinder, so that r, T,
and Jn[V; j] do not depend on time.

Property 6. Let V(t), D(t), be the solutions of

˛ d
dt

V(t)=−g+2crJ2(V)+crJ0(V) D (45)

d
dt

D(t)=2cr 52J1(V) D − 3 1 c

L
2 J3(V)6 (46)

with V(0)=0 and D(0)=0, then the solution of (9) with initial conditions
OV sPt=0=0 is given at order (c/L) by

OV sP=V s+
s(s − 1)

2
V s − 2D (47)

where D(t)=OV2P−OVP2=O( c

L).

Corollary. The stationary solution of the piston with finite mass, in
the infinite cylinder, is given at order (c/L) by
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g=cr 52J2(Vst)+
3
2
1 c

L
2 J0(Vst) J3(Vst)

J1(Vst)
6 (48)

Dst=
3
2
1 c

L
2 J3(Vst)

J1(Vst)
. (49)

As we have discussed in Section 3 (for c/L=0), if |1 − Lr0kBT0/Mg|
is small, then V. is small. Adding the term in c/L in (9) we expect that
for c/L ° 1 we have similarly |Vst | ° 1 so that we can consider Eq. (48)
to first order in Vst. Introducing jn=Jn(V=0) and using the fact that
(d/dV) Jn(V)=Jn − 1(V) we have

Jn(V)= C
.

r=0

V r

r!
jn − r.

Therefore to first order in Vst we obtain

g=cr 52j2+2j1Vst+
3
2
1 c

L
2 j0 j3

j1

6 (50)

Dst=
3
2
1 c

L
2 j3

j1
. (51)

In particular taking as initial conditions Maxwellian distributions of velo-
cities for the particles yields

j0=g 1
2

j1=g −1 kBT
2pm

21/2

j3=g 1
3
1kBT

m
2 j1 (52)

Dst=OV2Pst −OVP2
st=

kBT0

M
(53)

l̄Vst=−g+r0kBT0
L
M

(54)

l̄=2cr0
=kBT0

2pm
. (55)

To conclude this section, let us consider the evolution for the case where
|1 − (L/Mg) rkBT| ° 1. Under this condition |Vst | ° 1 and we can
linearize (45) and (46) to obtain
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˛ d
dt

V(t)=−g+2crj2+2crj1V+crj0(V) D (56)

d
dt

D(t)=2cr 52j1D − 3 1 c

L
2 j3

6 (57)

where by definition 2crj2= c

2m rkBT= L
M+m rkBT.

Property 7. Under the condition |1 − (L/Mg) rkBT| ° 1 and the
initial condition F0(V)=d(V) the evolution of the piston with finite but
large mass in the infinite cylinder is given at first order in (c/L) by

OV2Pt −OVP2
t =

c

L
3j3

2j1
(1 − e−2l̄t)

OVPt=
1
l̄
1 c

2m
rkBT − g2 (1 − e−l̄t) −

c

L
3j0 j3

4j2
1

(1 − e−l̄t)2

(58)

where l̄=2cr | j1 |.

Conclusion.

1. Under the condition |1 − (L/(M+m) g) r0kBT0 | ° 1, the piston
will reach equilibrium, i.e., OVPt Q .=0 if and only if

g=
L

M+m
rkBT+

3
2
1 2m

M+m
22

Lr
j0 j3

j1
. (59)

In particular for a Maxwellian distribution the condition to reach equilib-
rium is from (52)

g=
L
M

rkBT. (60)

However for a stationary distribution of the molecules j(v)=f(v2), which
is not Maxwellian the condition for equilibrium is (59) and not (60).

2. Defining the temperature of the piston by

kBTpiston=M[OV2P−OVP2] (61)

it follows from (53) that in the stationary state Tpiston=T.

3. If |1 − (L/Mg) r0kBT0 |=O(c) then OVP=O(c), but OV2P−OVP2=
O(c/L). In this case the motion is deterministic and the fluctuations are
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negligible. On the other hand if |1 − (L/Mg) r0kBT0 |=O(c/L) then OVP=
O(c/L) and OV2P−OVP2=O(c/L) and in this case the fluctuations are
important.

5. PISTON WITH FINITE MASS IN A FINITE CYLINDER

From Boltzmann’s Equation to Thermodynamics

As in Section 3.2 we take L1=0. Let us recall that by definition
Eq. (13)

4mrJ2(V)=p −
M+m

L
l̄(V) V. (62)

We now introduce a second friction coefficient z(V) defined by

2rJ0(V)=r −
M
L

z(V)
kBT

V (63)

which is positive for all V, since j0=1
2 and dJ0(V)/dV=−j(V; t) is negative.

The evolution at order c/L is such that Eq. (45) and (46) are satisfied
with V=dX/dt=OVP and D(t)=OV2P−OVP2=kBTpiston/M. Therefore
the equilibrium states are characterized by

˛
OVP=0

OV2P=D=
3
2

c

L
j3

j1
=

3m
M+m

j3

j1

g=cr 1kBT
2m

+
3
2

m
M+m

j3

j1

2

(64)

(which is the same as (48) and (49) with Vst=0).
At this point we can not say anything about j1 and j3. However, for

initial conditions such that the distribution of velocities are Maxwellian
with Lr0kBT0 % Mg and f(V)=d(V), the initial state differs from an equi-
librium state only because D2 is zero, instead of being equal to kBT0/M
=O(c/L). Taking for initial conditions Maxwellian distributions with
|1 − Lr0kBT0/Mg| ° 1 and f(V)=d(V − V0) with |V0 | ° 1, we expect that
the velocity of the piston will remain small and that the relation between J1

and J3 will remain the same as for Maxwellian velocities at order zero in
c/L. Thus we introduce
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Assumption 3. For |V| ° 1, the relation between J1, J2, and J3 is
at order zero in c/L, the same as for Maxwellian distributions, i.e.,

− 6mJ3(V)+2mVJ2(V)=−2kBTJ1(V)+O 1 c

L
2 (65)

which implies for V=0

3mj3=kBTj1+O 1 c

L
2 with j1=−= kBT

2pm
. (66)

With this last assumption, the equilibrium states are characterized by

˛
OVP=0

OV2P=
kBT
M

g=
L
M

rkBT

(67)

and therefore at equilibrium the temperature of the piston, defined by (61),
is equal to the temperature of the gas.

To discuss the evolution we note that since L1 is finite the functions
J1(V), J2(V), J3(V) will depend on time. Therefore we should consider the
Boltzmann equation for the fluid with time dependent boundary conditions
to obtain j(v; t). Before investigating this difficult problem and to get some
feeling about the equations describing the evolution, we consider that
Assumptions 1–3 hold at order zero at least for some initial conditions
close to the equilibrium condition. With those three assumptions the
evolution (45) and (46) is described to first order in the small parameter
a=c/L=2m/(M+m) by the equations

˛ d
dt

V=−g+
L
M

rkBT − l̄(V) V −
a

2
5 L

M
rkB(T − Tp)+

Tp

T
z(V) V6

d
dt

(kBTp)=8m
L
M

rkB(Tp − T) J1(V) − 2m
L
M

rkBTV+2ml̄(V) V2

(68)

where r=r(X) is given by (27) and Tp is the piston temperature, together
with the equation for conservation of energy (and Assumption 2)

N
M

kB
d
dt

T+V
d
dt

V+
1
2

d
dt

D+gV=0. (69)
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Furthermore we introduce the temperature T and the entropy S for the gas
and the piston by:

For the gas (as in Section 3.2 except that here it is not per unit length)

Eg=NkBT,

Sg=NkB ln[F(X) NkBT]
(70)

where d
dX ln F(X)=L

N r(X).
For the piston (from (61))

Ep=1
2 MOV2P=1

2 MV2+1
2 kBTp (71)

Sp=1
2 kB ln(kBTp). (72)

For the whole system

E=Eg+Ep+MgX (73)

S=Sg+Sp=NkB ln[F(X)(E − MgX − Ep)]+1
2 kB ln[2Ep − MV2]

=S(E, Ep, X, V). (74)

Property 8. The equilibrium state of the evolution Eq. (68), is given
by Eq. (67) and correspond to the unique maximum of the entropy func-
tion S(E, Ep, X, V) under the constraint that E=E0 is fixed. The proof is
straightforward and will be omitted.

To study the evolution we consider the ‘‘entropy production’’ dS/dt.
From (74) we have

dS
dt

=3kBLr(X) −
M
T
1 d

dt
V+g24 V −3 1

T
−

1
Tp

411
2

kB
d
dt

Tp
2 . (75)

On the other hand defining a ‘‘dissipative force’’ Fdiss by Newton’s equation

d
dt

OVP=−g+
L
M

(p+Fdiss) (76)

and a ‘‘heat flux’’ JQ by the 1st law of thermodynamics

d
dt
1OEgasP

L
2=−(p+Fdiss)OVP+Jp Q gas

Q (77)
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we obtain from Eqs. (76), (77), (71) and the conservation of energy (3)

Jp Q gas
Q =−

kB

2L
d
dt

Tp=−Jgas Q p
Q . (78)

Moreover from Eqs. (45) and (46) (i.e., Boltzmann’s equation to first order
in a=c/L) together with the definitions (62), (63), (61) and Eq. (78), we
have

Jp Q gas
Q =ar 5− 2kBTpJ1(V)+

M
M+m

6mJ3(V)6 (79)

− Fdiss=−
a

2
rkBTTp

5 1
T

−
1
Tp

6+
M
L
5Tl̄(V)+

a

2
Tpz(V)6 V

T
(80)

and from Eqs. (78) and (75) (derived using Assumption 2)

d
dt
1S

L
2=Jp Q gas

Q
5 1

T
−

1
Tp

6− Fdiss
V
T

. (81)

This last equation is of the form

d
dt
1S

L
2= C

2

a=1
JaXa=(J, X) (82)

with

J=1Jp Q gas
Q

− Fdiss

2 and X=R 1
T

−
1
Tp

V
T

S . (83)

Finally with Assumption 3, Eq. (79) yields

Jp Q gas
Q =2arkBTTp |J1(V)| 5 1

T
−

1
Tp

6+2am
M

M+m
rTJ2(V)

V
T

. (84)

In conclusion the entropy production per unit length is

d
dt
1S

L
2= C

2

a=1
JaXa (85)
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where

Ja= C
2

b=1
LabXb (86)

and the matrix of coefficients is given by

L=R2arkBTTp |J1(V)| 2amrTJ2(V)

−
a

2
rkBTTp

M
L
5Tl̄(V)+

a

2
Tpz(V)6

S .

With (62) the form (85) will thus be positive definite if

32
M
L

rkBTp |J1(V)| 5l̄(V)+
a

2
Tp

T
z(V)6

\ a 5rkB(T − Tp) −1M+m
L

2 l̄(V) V6
2

. (87)

We remark that the left-hand side is strictly positive of order zero in a,
while the right-hand side is of order one in a and zero for the equilibrium
state T=Tp, V=0.

Property 9. The evolution, defined by the Boltzmann equation to
first order in a together with Assumptions 2 and 3, will satisfy the condition

dS
dt

\ 0 for all t

if the initial state is sufficiently near an equilibrium state (i.e., if the
inequality (87) is satisfied for all t). In this case the piston will evolve to the
unique equilibrium state associated with the maximum of S under the con-
straint of constant energy E=E0.

Comments on the Thermodynamics

1. In the thermodynamic limit L Q ., M Q ., i.e., a=0 we recover
the results of Section 3.2

Jp Q gas
Q =0 and

d
dt
1S

L
2=

1
T
1M

L
2 l̄(V) V2.

The evolution of the gas is thus adiabatic (no heat transfer).
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2. The evolution of the total system, as well as both sub-systems,
obeys the two laws of thermodynamics.

3. From (72) and (78)

d
dt

Sp=
L
Tp

Jgas Q p
Q

which shows that the variation of entropy of the piston is entirely due to
the heat flux (no internal entropy production). On the other hand for the
gas

d
dt

Sg=
L
T

Jp Q gas
Q +

1
T

Ml̄(V) V2

and thus the variation of entropy of the gas is associated with the heat flux
as well as an internal entropy production.

4. We observe a ‘‘coupling effect’’ between the two generalized forces
(X1, X2) and the generalized fluxes (J1, J2), i.e., a non-zero velocity of the
piston contributes to the heat flux, and a non-zero temperature difference
contributes to the dissipative force.

5. The matrix L connecting the fluxes to the forces, evaluated at
equilibrium, i.e.,

L=R2arkBT2 |J1(V)|
1
2

arkBT2

−
1
2

arkBT2 M
L

T 5l̄(0)+
a

2
z(0)6

S
is antisymmetric. We thus see that Onsager’s relation is satisfied, with the
anti symmetry property related to the fact that V changes sign under time
reversal.

6. NUMERICAL RESULTS

The motion of the two-dimensional adiabatic piston containing a gas
of hard particles (shown in Fig. 1), was simulated using the standard
molecular dynamics method for hard disk systems. The length and mass
scales in the simulation were determined by choosing the mass of each hard
disk m and its diameter d to be equal to unity. We begin with an initial
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arrangement of N non-overlapping hard disks with velocities chosen ran-
domly, but so that the total kinetic energy of the gas is related to the
desired initial temperature by

1
2

C
N

i=1
mv2

i =NkBT0.

This system was evolved in time by determining the next collision
event. Each particle moves in a straight line and the piston falls freely
under the external force, until a collision occurs. This can be either a par-
ticle-particle collision, or a particle-wall collision, where the wall can be any
of the cylinder walls or the piston. Once the next collision is reached, the
collision rules (4) are used to find the post collision velocities of the par-
ticles, or particle and piston. Then the next collision is determined and the
process is repeated for as many collisions as we desire.

In a typical numerical experiment, the cylinder contains N hard disks
at some initial temperature kT0, and the piston is at an initial position X0.
The piston is released, and generally the pressure exerted by the gas on the
piston does not balance the force per unit length exerted by the piston on
the gas. Thus the piston moves towards the final equilibrium position Xf.
The system is evolved in time for a large number of collisions, and when
the initial volume is such that the system is not in equilibrium we typically
observe an evolution of the piston in two stages: first a damped oscillatory
deterministic relaxation towards the equilibrium position, and then fluc-
tuations around that equilibrium position (as in Fig. 3).
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STEADY FLUCTUATIONS

Fig. 3. The piston simulation of a hard disk gas of 108 particles with an initial temperature
of 10 and initial density of 0.1. The piston mass is 500 and g=0.4. The simulation shows two
distinct behaviours: first an initial transient evolution where the piston performs a determinis-
tic damped oscillation about the final equilibrium position Xf, then the piston fluctuates
about the equilibrium position Xf.
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Fig. 4. The same data as in Fig. 3 with the time axis expanded to see the damped oscillatory
behaviour more clearly. The simulation results are the crosses and the full line is the damped
cosine fit.

Looking closer at the two regions we find that the transient motion
(see Fig. 4) is, to a good approximation, a damped oscillation about the
final equilibrium position with a well-defined frequency and damping
constant X(t)=Xf+(X0 − Xf) cos(wt) exp( − lt). Fitting the data to a
damped cosine we can usually obtain a good estimate of both the
frequency w and the damping constant l.

However, in the steady fluctuation region of Fig. 3, as enlarged in
Fig. 5, we observe again a dominant single frequency of the motion of the
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Fig. 5. The same data as in Fig. 3 with the time axis expanded to see the frequency of the
piston fluctuations about the final equilibrium position.
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piston, and that frequency is the same as the frequency of the motion in
the transient region. The amplitude of the steady frequency oscillations in
the fluctuation region is modulated seemingly at random, with occasional
time sequences that suggest beats. We have studied both the transient and
long time behaviour of this simple piston system for a number of different
system sizes, piston configurations and initial conditions. A complete list
of these numerical results is given in Table I. The observed values of the
frequency w and the damping coefficient l are obtained by comparing the

Table I. The List of All Simulation Parameters and Results for Each Piston Experi-

ment. The Initial Number Density for Each State Can Be Calculated from the Table

Entries and the Equation ni=N/(LX0). In the Table the Value rf (see Assumption 2)

Is Calculated Using the Enskog Equation. The States Indicated by Bold Face

Numbers Are Those for Which R=Mgas/M >1

State N kT0 L X0 M g Xf kTf rf w l × 103

1 108 10 20.78 51.96 500 0.4 32.9 46.028 0.209 0.177 1.5
2 108 10 20.78 51.96 1000 0.2 32.9 46.028 0.209 0.128 0.6
3 108 10 29.39 73.48 500 0.4 42.23 67.88 0.100 0.146 1.6
4 108 10 29.39 73.48 1000 0.2 42.22 67.88 0.100 0.1057 0.8
5 108 76.6 29.39 37.5 125 0.4 104.8 45.7 0.037 0.0806 2.0
6 108 76.6 29.39 37.5 500 0.1 104.8 45.7 0.037 0.044 0.5

7(=3) 108 10 29.39 73.48 500 0.4 67.88 1.6
8 108 10 29.39 51.43 1000 0.4 30 89.7 0.151 0.175
9 108 10 29.39 220.5 100 0.4 126 45.83 0.030 0.072
9 588 10 68.59 171.5 500 0.4 107 31.9 0.09 0.078 1.3

10 864 1.25 235.15 73.48 4000 0.4 40.28 63.5 0.107 0.157 1.6
11W 432 20 117.58 73.48 125 1.6 62 25.7 0.066 0.164 5.4
12S 432 20 58.78 147 125 0.8 123 25.7 0.066 0.08 1.7
13L 432 20 29.39 293.9 125 0.4 245 25.7 0.066 0.04 0.6
11W 432 20 117.58 73.48 125 0.5 108 14.86 0.036 0.063 2.7

14(=3) 108 10 29.39 73.48 500 0.4 42.6 67.88 0.100 0.146 1.6
15W 432 10 117.57 73.48 2000 0.4 42.6 67.88 0.100 0.155 1.6
16W 864 10 235.15 73.48 4000 0.4 42.6 67.88 0.100 0.148 1.5
17W 1728 10 470.30 73.48 8000 0.4 42.6 67.1 0.1002 0.145 2.0
17W 1728 10 470.30 73.48 1600 2.0 42.6 67.3 0.1002 0.283 7.5
18W 1728 10 470.30 73.48 800 4.0 42.6 67.3 0.1002 0.35 15
19W 1728 10 470.30 73.48 200 16.0 42.6 67.1 0.1002 0.44 30
20W 1728 10 470.30 73.48 100 32.0 42.6 67.3 0.1002 0.465 38
21W 1728 10 470.30 73.48 50 64.0 42.6 67.2 0.1002 0.48 40
22W 1728 5 470.30 73.48 100 16.0 42.6 33.9 0.1002 0.33 27
23W 1728 2.5 470.30 73.48 200 4.0 42.6 16.9 0.1002 0.22 17
24W 432 20 117.58 73.48 4000 0.4 42.6 132.5 0.1002 0.150 1.0
25S 432 20 58.79 147 4000 0.2 85.0 133 0.1002 0.075 0.25
26L 432 20 29.39 293.9 4000 0.1 169 131 0.1002 0.0380 0.06
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time evolution of the piston position with a damped cosinusoidal curve,
changing parameters until the best fit is obtained.

Scaling Properties

There is an exact scaling property of the microscopic equations of
motion of the piston and gas system. That is, for the same initial positions
and velocities for the particles and piston, and the same piston geometry
and mass, the following transformation leaves the equations of motion
invariant

˛kT S kT/a S (v S v/`a)

V S V/`a

g S g/a.

(88)

As the collision rules involve the mass of the particles and the mass
of the piston, and these are unchanged, the evolution is identical up to a
scaling on the time t S `a t, which then implies the scaling w S w/`a

and l S l/`a. In general, for a different set of initial conditions for the
particle’s positions and/or velocities, but with the same temperature, we
expect the same macroscopic motion of the system (i.e., the same frequency
and damping) but with different fluctuations.

This scaling property is verified in our simulations as can be checked
by the results listed in Table II. There are two sets of 1728 particle systems
(with X0=73.48, Xf=42.6, and L=470.30) which satisfy this property.
First, the states 20W and 22W differ in initial temperature (and also the
final temperature) by a factor of two. This implies that the observed
frequency and damping should change by a factor of `2. Both of these
changes are observed. Second, the states 19W and 23W differ in initial
temperature by a factor of four so the frequency and damping should
change by a factor of two. Again the frequency and damping do satisfy the

Table II. States that Differ Only by a Scaling of the Temperature

State N kT0 M g kTf rf w l × 103

20W 1728 10 100 32.0 67.3 0.1002 0.465 38
22W 1728 5 100 16.0 33.9 0.1002 0.33 27
19W 1728 10 200 16.0 67.14 0.1002 0.44 30
23W 1728 2.5 200 4.0 16.9 0.1002 0.22 17
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predicted scaling relation, and the final temperatures differ by a factor of
four.

The Damping Coefficient and Frequency

The observed values of the damping appear to lie within the two
extremes; weak damping and strong damping. These two states are typified
by 17W and 20W. In a previous paper (12) we have looked at these two
states in detail and we find that the important difference is the maximum
speed of the piston in comparison to the average thermal velocity of a fluid
particle. In the strong damping regime the piston attempts to move faster
than the average thermal velocity in its first descent, and carries with it a
wave of fluid particles. The momentum carried by this wave of particles
travels faster than the piston and is reflected off the bottom of the cylinder,
and returned to the piston. The piston then travels back up the cylinder at
a speed which is faster than the velocities of many fluid particles, and in
this way very few fluid particles can return their increased energy to the
piston, thus the piston does not reach its initial position. In one oscillation
much of the kinetic energy of the piston has been transferred to the gas and
does not return. In contrast, in the weak damping case the motion of the
piston is slower than the thermal velocity of the fluid particles and at each
stage through the first descent of the piston the fluid is, to a good approx-
imation, able to establish thermal and mechanical equilibrium everywhere
within the cylinder. The fluid is compressed until the pressure rises suffi-
ciently to reverse the motion of the piston. As the piston moves more
slowly up the cylinder, many fluid particles can collide with it and return
much of their energy to the piston. The piston then rises almost to its initial
height.

Between these two extremes of weak and strong damping, as charac-
terized above, is a series of intermediate states, and in going from the strong
damping state with piston mass 100 to higher piston masses, the initial
motion of the piston becomes slower and slower compared with the
thermal velocity, and the mechanisms gradually change from those typical
of strong damping to those of weak damping.

The principle purpose of this section is to compare the predictions of
the kinetic theory developed in previous sections with the results obtained
by numerical simulation. In particular, we want to compare in detail the
values of the frequency and damping coefficient predicted by Eqs. (43)
and (44) with those obtained numerically. We will begin by considering the
damping. Let us recall that one of the conclusions obtained from kinetic
theory is that introducing the ratio R=mN/M, then for R < p the
damping is weak, while for R > p the damping is strong.
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As we have investigated two general types of behaviour, strong and
weak damping and observed that for 1728 particle systems in particular,
the two regimes correspond to R=N/M > 1 and R < 1, respectively, we
can look for relations that fit the behaviour in each regime. The best fit to
the numerical data is

˛l fit=
R
8
1 L

N
22

rf
=kBTf

m
=

1
16

1 p

2m
21/2 L

N
l̄f for R < 1

(89)

l fit=
`R

6
1 L

N
22

rf
=kBTf

m
=

1
12

1 1
R
21/2 1 p

2m
21/2 L

N
l̄f for R > 1

(90)

where l̄f is given by Eq. (43). For R > 18, the observed value of lobs

appears to be independent of R. In Fig. 6 we present a graph of all the
predicted values of the damping coefficient as a function of the observed
value. The two fitted expressions in (89) largely agree with the observed
values throughout their expected ranges of validity, although there are
some points in R < 1 region where the fit valid for R > 1 agrees well with
the observed values. Let us note that both expressions (89) and (90) give
the same result for R=16/9 5 1.8.

In Fig. 6 we present a graph of the damping coefficient computed
from the different expressions (43), (89), and (90) as functions of the
observed value lobs. As can be seen on this figure the expressions (89)
and (90) largely agree with the observed values throughout their ranges of
validity, i.e., l fit 5 lobs. On the other hand the values predicted from (43)
are about 115 too large, i.e., l̄f 5 115lobs. (We shall come back to this
point after Fig. 9.)

In Fig. 7 we present a comparison between the predicted results for
the frequency and the observed values (Table I). If the friction coefficient
is sufficiently small, then the predicted frequency of oscillations obtained
from (43) is approximately

wad=`2R
L
N

rf `kBTf (91)

(since in all our simulations the coefficient 1
2 (c/Xf)2 is negligible). Let us

note that the frequency given by Eq. (91) is exactly the frequency obtained
in thermodynamics assuming adiabatic oscillations. (11)

As we can see from Fig. 7, the adiabatic frequency (91) agrees very
well with the observed values for R < 1. This corresponds to the case of
weak damping with lobs in the range (0.6–2) × 10−3. Let us remark that
another measure of weak versus strong damping is given by the ratio
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Fig. 6. A log–log plot of the values predicted by Eqs. (43), (89), and (90) as functions of the
numerically observed value lobs. The empty symbols are for those states with R < 1, the filled
symbols are for those with R > 1. Notice that the empty squares and the full diamonds lie
along the diagonal, which is the line of agreement between the predicted values (89) and (90)
and the observed values. The equation in the top left-hand side is a power law fit to the data
which indicates that to a good approximation lp ’ 115lobs.
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Fig. 7. A graph of wad, and of w predicted by Eqs. (91), (92), and (93), as functions of the
observed frequency wobs.
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lobs/wobs, and for the simulations with R < 1 this ratio lies in the range
(1–15) × 10−3.

However, for 2 < R < 5, the observed values are best fitted by

wiso=`R
L
N

rf `kBTf for 2 < R < 5 (92)

which corresponds to the thermodynamical value, assuming isothermal
oscillations. For this range of R, the damping is intermediate between weak
and strong with lobs/wobs in the range (20–40) × 10−3.

Finally for R > 5, the observed values are best fitted by the expression
independent of R

wstr=
p

`2

L
N

rf `kBTf for R > 5. (93)

It corresponds to strong damping with lobs larger than 17 × 10−3 and a
ratio lobs/wobs larger than 70 × 10−3.

There is one sequence of simulations with 1728 particles at initial
temperature kBT0=10 in a cylinder of width 470.3 and initial piston posi-
tion of X0=73.48 where we can follow the progression from weak
damping in state 17W to strong damping in state 21W. For all of these
simulations we have the same final equilibrium state: Xf=42.6,
kTf=67.2 ± 0.1, and rf=0.1002. From Eq. (43) it can be shown that
l̄f % 615M−1, and from (91) wad=13.14/`M. Using the values from
Eqs. (89) and (90) for l fit, and from Eqs. (91)–(93) for wfit we obtain the
results presented in Table III.

Only for the weak damping state (17W) does the predicted frequency
wad agree with the observed frequency; for the intermediate damping state
(18W) the isothermal frequency agrees with the observed value, while for

Table III. Results for the Sequence of States with the Same Final State and Same

Value of Mg. The Value of lfit Is the One that Is Valid for the Value of R

State M R g wobs wad wfit lobs × 103 l̄f × 103 l fit × 103

17W 8000 0.216 0.4 0.145 0.147 0.147 2.0 77 1.6
17W 1600 1.08 2.0 0.283 0.327 0.232 7.5 386 10.6
18W 800 2.16 4.0 0.35 0.465 0.329 15 769 15.2
19W 200 8.64 16.0 0.44 0.929 0.50 30 3080 30.4
20W 100 17.28 32.0 0.465 1.314 0.50 38 6150 42
21W 50 34.56 64.0 0.48 1.858 0.50 40 12300 43
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strong damping the observed frequency remains constant. For the damping
coefficients the value of l̄f never agrees with the observed value.

In attempting to fit the motion of the piston to a damped cosine for
many of the strong damping states it was found that a much better fit
could be obtained if the initial displacement of the piston was not included
in the fit, that is, if the initial displacement for the purposes of the fit was
taken to be less than the actual displacement. In Fig. 8 we show a com-
parison of the actual piston motion and the damped cosinusoidal fit to that
motion for the first two oscillations of the piston. Notice that the actual
piston motion is not cosinusoidal but has narrower troughs and broader
peaks, and this is most noticeable in the weak damping case. In general the
fits are quite reasonable except for the weak damping case in which a fit to
the first two oscillations is different to the fit to the whole transient region.
This occurs either because the damping is not constant over the whole
transient, or there are significant fluctuations. However, for this case the
piston has mass 8000 and fluid has mass 1728 so the largest fluctuations
should be in the component with the smallest mass, i.e., the fluid.

Velocity of the Piston

From the sequence of plots of the piston velocity in Fig. 9 it is evident
that for the strong damping states where R=34.56, 17.28, and 8.64
(i.e., M=50, 100, and 200) after the piston is released the velocity increases
(in absolute value) almost immediately to a maximum value Vmax=8.5 and
remains at that velocity for 6 time units. Since in this time interval no
recollisions of the particles with the piston has yet taken place, we can
compare this Vmax with the terminal velocity V. for the piston in an infinite
cylinder. Using Eq. (23) we find V.=7.3 which is in rather good agreement
with the (constant) velocity of the piston in its first descent. Other values
for strong damping are presented in Table IV.

This comparison indicates that the friction mechanism leading to a
constant velocity for the infinite cylinder, or during the first descent, is dif-
ferent from the mechanism leading to the observed damped oscillations. In
fact, as the piston descends the cylinder we have seen (12) that in the strong
damping case 22W a region of higher density builds up in front of the
piston. Using fluid hydrodynamics (14) we find that in 2-dimensions a con-
stant velocity leads approximately to a density in front of the piston two
times higher than the initial density.

This is in fact the mechanism which leads to the friction coefficient l̄f.
However, in ref. 12 we observe that the maximum density at the surface of
the piston is typically three times higher than the initial density. (Rather
than using Eq. (24) to calculate the terminal velocity, if take the terminal
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Fig. 8. The time evolution of the piston for the sequence of 1728 particle states. The
M=8000 is the weak damping state and the M=100 is the typical strong damping state. The
solid line is the position of the piston and the dashed line is the damped cosinusoidal fit to the
piston position. The arrows on the vertical axes in the first five states indicate that the best fit
to the whole piston motion is obtained by changing the initial piston position. Both the real
piston position and the changed value are indicated by arrows on the x-axis.
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Fig. 9. The velocity of the piston for the sequence of 1728 particle states. The M=8000 is
the weak damping state and the M=100 is the typical strong damping state. Notice that in
the first three states the piston has reached its maximum velocity in the first compression.
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Table IV. Comparison of the Velocity of the

Piston in the Infinite Cylinder (Eq. (29)) and

the Observed Value During the First Descent

State R V. Vmax

18W 2.16 7.3 7.6
19W 8.64 7.3 8.5
20W 17.28 7.3 8.3
21W 34.56 7.3 8.8
22W 17.28 5.2 5.8
23W 8.64 3.7 4.2

velocity to be −8.5 and use this to determine the density increase we get
r0=0.129. This is well within a three fold density increase.)

It is apparent that when the piston reaches its terminal velocity it is no
longer acting as a damped oscillator but rather the force acting on it is dis-
sipated by the fluid. Once this initial damping is complete and the piston
remains below V., its behaviour is much more like a damped oscillator.
We could assume that the damped oscillation begins when this phase is
complete, or as we have done, assume that the piston begins at a smaller
value of X. We have already seen that this is necessary to get realistic fits
to the piston motion.

7. CONCLUSIONS

In this paper we have investigated some fundamental questions con-
cerning the approach to equilibrium and the entropy production for
systems which initially are away from equilibrium. For the simple piston
considered in this work we have in particular obtained from the Boltzmann
equation, as well as from numerical simulations, an approach towards the
equilibrium position of the piston predicted by thermostatics.

As observed in recent experiments, (8) our analytical equations and all
our simulations clearly indicate that two regimes are exhibited: a weak
damping regime and a strong damping regime, depending on the ratio R of
the mass of the gas to the mass of the piston (small or large). For weak
damping, the frequency of oscillations observed in the simulations are in
good agreement with the values calculated from the Boltzmann equation,
and correspond to both the value obtained from hydrodynamics using the
adiabatic hypothesis and those observed experimentally. On the other
hand, for intermediate damping our simulations seem to indicate isother-
mal oscillations as observed in recent experiments. Finally, for strong
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damping the observed oscillations do not depend any more on the ratio R.
To understand the microscopic origin of the difference between weak and
strong damping, we have plotted the velocity of the piston as a function of
time. It shows that for weak damping the velocity of the piston varies
slowly with the consequence that the energy which has been transferred to
the gas can be transferred back to the piston. While in the case of strong
damping the velocity of the piston varies very rapidly and leads to dissipa-
tion. The observed velocity of the piston before recollision of the molecules
(on the piston) agrees well with the predicted value and thus the friction
coefficient computed from the microscopic theory agrees with the simula-
tions. However, the predicted values of the damping coefficient appear too
large by two orders of magnitude regardless of the initial state. Indepen-
dently of weak or strong damping the simulations have shown that the
evolution takes place in two distinct stages: in the first stage the evolution
appears to be a deterministic transient motion with damped oscillations
toward the equilibrium position where the pressure of the gas balances the
external force. In the second stage we observe steady fluctuations around
the equilibrium position with a single frequency equal to the frequency in
the transient stage, but the amplitude of which is modulated at random and
slowly decreases in time with occasional sequences suggesting beats. We
interpret these random fluctuations as the mechanism which will ultimately
lead to a Maxwellian velocity distribution of the gas particles.

In our microscopical model we have introduced ad hoc assumptions to
obtain explicit equations for the evolution. We have shown that one can
analyse the equations so obtained by means of an entropy function which
has all the properties required from thermodynamics in particular there
is a positive entropy production during the evolution, the entropy is a
maximum at equilibrium and Onsager’s relations are satisfied near equilib-
rium. To go further it appears necessary to investigate in detail the coupled
equations for the piston and the fluid; the entropy should then be defined
by taking into account the fact that the fluid is inhomogeneous. One can
expect that the definitions and assumptions we have used should be good
when the system is close enough to equilibrium, or when the parameters are
chosen such that the velocity of the piston is sufficiently small to insure
that at any time the fluid is approximately homogenous. However even in
this case it is still an open problem.
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